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Abstract

The modern Western diet is rich in advanced glycation end products (AGEs). We have pre-

viously shown an association between dietary AGEs and markers of inflammation and oxi-

dative stress in a population of end stage renal disease (ESRD) patients undergoing

peritoneal dialysis (PD). In the current pilot study we explored the effects of dietary AGEs on

the gut bacterial microbiota composition in similar patients. AGEs play an important role in

the development and progression of cardiovascular (CVD) disease. Plasma concentrations

of different bacterial products have been shown to predict the risk of incident major adverse

CVD events independently of traditional CVD risk factors, and experimental animal models

indicates a possible role AGEs might have on the gut microbiota population. In this pilot ran-

domized open label controlled trial, twenty PD patients habitually consuming a high AGE

diet were recruited and randomized into either continuing the same diet (HAGE, n = 10) or a

one-month dietary AGE restriction (LAGE, n = 10). Blood and stool samples were collected

at baseline and after intervention. Variable regions V3-V4 of 16s rDNA were sequenced and

taxa was identified on the phyla, genus, and species levels. Dietary AGE restriction resulted

in a significant decrease in serum Nε-(carboxymethyl) lysine (CML) and methylglyoxal-deriv-

atives (MG). At baseline, our total cohort exhibited a lower relative abundance of Bacter-

oides and Alistipes genus and a higher abundance of Prevotella genus when compared to

the published data of healthy population. Dietary AGE restriction altered the bacterial gut

microbiota with a significant reduction in Prevotella copri and Bifidobacterium animalis rela-

tive abundance and increased Alistipes indistinctus, Clostridium citroniae, Clostridium
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hathewayi, and Ruminococcus gauvreauii relative abundance. We show in this pilot study

significant microbiota differences in peritoneal dialysis patients’ population, as well as the

effects of dietary AGEs on gut microbiota, which might play a role in the increased cardio-

vascular events in this population and warrants further studies.

Introduction

Advanced glycation end products (AGEs) are a heterogeneous group of compounds that are

formed by the non-enzymatic reaction of reducing α-carbonylic compounds with free amino

groups in proteins, lipids and nucleic acids resulting in alteration in their function [1–3]. We

know, however, that AGEs may form through many other biological pathways [4]. AGEs are

constantly formed at a small rate endogenously and a significant amount is consumed as food.

There is significant literature linking elevated AGE levels with increased cardiovascular risk

[5, 6], diabetes [7, 8], aging [9, 10], and renal dysfunction [11–14]. AGE accumulation can be

harmful through several mechanisms including affecting protein structure and function by

directly cross-linking with them, or by activating cellular receptors [15–18].

In subjects with normal renal function, AGEs are excreted in urine. However, in patients

with end stage renal disease (ESRD) requiring hemodialysis (HD) or peritoneal dialysis (PD),

AGEs build up in the body due to impaired urinary elimination and limited clearance during

dialysis [19–21].

Due to food preparation methods, modern western diets contain large amounts of AGEs

[22, 23], and the estimated daily amount supplied ranges from 25 to 75 mg of mainly pyrraline

and carboxymethyllysine (CML) [24]. It has been suggested that about 10–30% of the ingested

load of dietary AGEs (dAGEs) gets absorbed into the body and becomes incorporated in the

body AGE pool [25–27]. The remainder of the ingested AGEs travels to the colon where it

could interact with the bacterial microbiota [28–30]. Methylglyoxal (MG) is a reactive dicarbo-

nyl intermediate and an AGE precursor [31]. Its concentration is increased in diabetes and it

is known to increase oxidative stress [31], worsen vascular damage, and promote atherosclero-

sis and cardiovascular events [32, 33]. MG can lead to increase AGE induction resulting in

worsening oxidative stress [31], diabetic myopathy [7], chronic low-grade inflammation, and

impaired extracellular matrix remodeling [34].

In vitro studies have indicated that Maillard reaction products (MRPs) may affect bacterial

growth [35] and gut microbiota composition, and that micro-organisms can degrade AGEs

[35, 36]. Anaerobic bacteria, particularly Bifidobacteria strains, have been shown to be able to

use bread melanoidins (the final products of the Maillard reaction) as a carbon source [29].

This indicates that dAGEs might affect gut microbiota through negative selection (direct toxic

effects), or positive selection (favoring bacterial species overgrowth that can utilize dAGEs as

source of energy). In this pilot study, we aimed to evaluate the effect of restricting a habitually

high dAGE consumption on gut microbiota in a group of ESRD patients on maintenance PD,

and hypothesize that dAGE restriction affects the diversity of bacterial gut microbiota in

patients with ESRD receiving maintenance PD.

Materials and methods

Study participants and enrollment

This is a randomized, open label trial. This pilot study was aimed at exploring the effects of

dAGEs restriction on the bacterial gut microbiota composition in PD patients. Patients were

dAGEs effects on gut microbiota in PD patients
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recruited from the Icahn School of Medicine at Mount Sinai PD unit from June 2015 until

December 2015 (ClinicalTrials.gov; NCT02467530). Screening and feasibility evaluation was

initiated on January 2015, and study protocol (Study protocol) was submitted on June 8th

2015. The first patient was recruited after finalizing the study submission on ClinicalTrials.

gov. The authors confirm that all ongoing and related trials for this intervention are registered.

All patients signed informed consent; the trial was conducted in accordance with the Declara-

tion of Helsinki and good clinical practice guidelines. All research involving human partici-

pants was approved by the Icahn School of Medicine at Mount Sinai Institutional Review

Board (IRB, GCO 14–1961, first approved December, 2nd 2014 till December, 1st 2015), and all

clinical investigation have been conducted according to the principles expressed in the declara-

tion of Helsinki. Written informed consent was obtained before enrolling. Inclusion criteria

for the study included patients with ESRD receiving PD for at least 2 months, 18 years of age

or older who consumed a diet high in AGEs (>12 Eq/day) [23]. Patients with advanced liver

disease, heart failure, autoimmune disease, and those receiving probiotics, immunosuppres-

sant medications, steroids, chemotherapy, multivitamins, or oral iron supplements were

excluded. Patients who received a course of antibiotics were eligible three months after the last

dose. Patients with medical history of any cancer, abdominal surgery, or bowel obstruction

and those who sustained lower gastrointestinal bleeding were excluded (Fig 1, Consort 2010

checklist). No changes to methods after trial commencement were implemented.

Randomization and intervention protocol

Pre-prepared opaque envelopes were used to randomize subjects. After signing the consent,

patients were randomly given an envelope (by the principal investigator) with their allocation,

which was opened immediately to reveal their assignment. Patients had an initial interview

with the research dietitian to determine their habitual consumption of a high AGE diet and

then randomized to either a high (HAGE) or low AGE (LAGE) diet. Participants randomized

to continue the same high AGE (HAGE) diet were instructed to continue eating as usual for

the next one month and simply record a three-day diet log just before each study visit, baseline,

and one month. Those randomized to the low AGE (LAGE) were individually instructed on

meal planning to meet study requirements while maintaining their usual peritoneal dialysis

diet instructions. To vary the AGE content, foods, particularly meat, were exposed to different

cooking methods. LAGE subjects were instructed to boil, poach, stew or steam, avoid fried

entrees, and reheat food indirectly using steam in a double boiler. The subjects were followed

closely by phone calls (1 to 2 times/week) to assure dietary compliance.

Medical treatment was not changed during this month; blood pressure medications, phos-

phate binders, and erythropoietin stimulating agents (ESA) doses were kept the same. No new

antibiotics, probiotics, multivitamin, oral iron or antacid prescription was initiated during this

period. All participants’ samples and data were labeled using new unique identifiers and proce-

dures and measurements were all conducted blindly.

Stool sample collection and DNA extraction

Stool samples were collected by the participants at home on the morning of both visits, placed

in sterile, DNase, RNase and pyrogens free 50 ml tubes, transported on ice, and stored in -80 C

within four hours of defecating. DNA was extracted using PowerFecal1 DNA isolation kit,

according to the manufacturer protocol (MOBIO laboratory Inc. QIAGEN Company CA.

USA). Two separate isolations from each sample were obtained from a grossly firm stool

area absent of undigested food, and placed immediately in extraction tubes. DNA extraction

dAGEs effects on gut microbiota in PD patients
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was performed in duplicates on each sample and only samples with DNA concentration

�10 ng/microliter were sequenced.

16s sequencing and annotation

Metagenomic DNA was amplified using the 16S V3 (341F) forward and V4 (805R) reverse

primer pairs with Illumina adapter overhang. Reactions were purified using Agencourt

AMPure XP beads (Beckman Coulter). Illumina sequencing adapters and dual Indexes were

added to the amplified fragments using an 8 cycle PCR reaction, further purified as above, and

quantified using Quant-iT PicoGreen assay (Invitrogen). Quality control, quantification and

average size distribution of the libraries was assessed with the Advance Analytical Fragment

Analyzer. Libraries were normalized and pooled to 4 ηM, further quantified using NEBNext

NGS library quantification kit (NEB) prior to being denatured and diluted to a final

Fig 1. CONSORT flowchart. After enrollment, patients were randomized to either continue consuming high AGE diet, or a one month dAGE

restriction. Stool and blood samples were collected at baseline and after intervention. AGEs, Advanced glycation end products; GI, gastrointestinal;

PO, per os.

https://doi.org/10.1371/journal.pone.0184789.g001
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concentration of 10 pM with a 20% PhiX spike-in (Illumina) control. Sequencing was per-

formed using MiSeq Reagent V3 Kit (illumina) using 2 × 300 bp paired-end sequencing.

For the OTU picking, we merged Illumina paired-end reads using Pear (version 0.9.6)[37]

with default parameters applied. To improve taxonomic accuracy, we applied strict sequence

quality filtering. A sequence read with 90% of base quality scores higher than or equal to Q30

was considered as good quality read. After trimming the forward and reverse primer, we used

UPARSE (version 8.0)[38] to perform de novo OTU picking at different distance levels ranging

from 0.03 to 0.20 with step size 0.01. We removed chimera sequences by searching against the

gold UCHIME reference (http://drive5.com/uchime/gold.fa). By using QIIME (version 1.9.1)

[39] command line, the species level OTUs defined at the 0.03 distance level were annotated

by searching the representative sequence of each OTU against the Greengenes database (ver-

sion 13.5) [40].

Measurements

Dietary intake. Assessment of daily dAGE content was based on 3-day food records and

estimated from a database of *560 foods that lists AGE values expressed as AGE equivalents

per day (1 AGE equivalent = 1000 kilo units). Nutrient intakes were estimated from food rec-

ords using a nutrient software program (Food Processor, version 10.1; ESHA Research, Salem,

OR, USA).

AGE determination. AGEs (CML and MG) in serum were determined by well-validated,

competitive ELISAs based on monoclonal antibodies for protein-bound CML (4G9) and pro-

tein-bound MG derivatives, i.e. arginine-MG-H1, characterized by HPLC [4, 23, 25–27]. We

initially aimed to determine AGE concentration using skin fluorescent AGE measurements.

Since not all AGEs exhibit fluorescent properties, we decided to use more precise ELISA-based

test [41–43].

Statistical analysis

Descriptive analyses summarized continuous variables at baseline through their mean (SD)

and median (first and third quartiles). Categorical variables were summarized using percent-

ages. AGE levels were reported as time point values and the difference between post interven-

tion and baseline concentrations. This is a pilot study to evaluate the effects of dAGE

restriction on gut microbiota in PD patients; no previous similar study was conducted to aid

in evaluating and assessing sample size needed and power analysis. We believe that this current

study will provide this information for future studies.

Results

Patient characteristics

Patients were recruited until we reached the goal of 10 participants in each group. Of the 103

ESRD patients initially screened, five were excluded because of a low AGE diet at baseline.

There was no significant difference between the two groups in regards to age, gender or race

(Table 1). All participants were receiving PD at Mount Sinai Hospital for more than 2 months,

with similar dialysis vintage between the two groups, and no statistically significant difference

in regards to use of phosphate binders or erythropoietin. Laboratory data at baseline including

baseline AGE levels CML and MG were similar, except for lower ferritin levels in the HAGE

group (Tables 1 and 2). As expected, the low AGE diet group showed a significant decrease in

serum AGE levels post intervention (Table 2).

dAGEs effects on gut microbiota in PD patients
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Baseline gut microbiota profile in ESRD patients on PD

To better understand the compositions of bacterial gut microbiota in ESRD patients on PD,

we first performed a descriptive analysis to evaluate the relative abundance at phyla, genus,

and species levels. In our cohort, Bacteroidetes and Firmicutes accounted for approximately

56% and 32%, respectively of the phyla (S1A Fig, S1 Table). At the genus level, we found that

Table 1. Patient basic characteristics.

Characteristics HAGE (N = 10) LAGE (N = 10) P*

Age (years)6¼ 50.6 ± 16.2 49.7 ± 11.4 0.8

Weight (kg) 6¼ 78.1 ± 12.3 78.8 ± 13.8 0.9

BMI (Baseline) 6¼ 27.5 ± 4.1 25.8 ± 3.7 0.3

BMI (after intervention) 6¼ 27.13±3.6 25.73±4.3 0.4

Systolic Bp (mmHg) 6¼ 142 ± 23 136 ± 24 0.6

Diastolic Bp (mmHg) 6¼ 83 ± 16 83 ± 13 0.9

Diabetes Mellitus 1 2 0.9

Gender (N)

Male 4 6 0.7

Female 6 4

Race (N)

African Americans 4 6 0.5

White 3 3

Hispanics and others 3 1

Dialysis procedure and membrane

Icodextrin use 2 5 0.3

>twice daily D2.5% solution 4 5 0.9

Kt/v6¼ 2.3 ± 0.58 2.43 ± 0.81 0.7

APD/CAPD 4/6 4/6 0.9

Dialysis Vintage (weeks)6¼ 97 ± 154 132 ± 113 0.6

Baseline Diet

Protein (gr/day) 6¼ 87.5 ± 19.4 84.69 ± 20.7 0.8

Fat (gr/day) 6¼ 83.45 ± 29.9 81.54 ± 32.9 0.9

Carbohydrates (gr/day) 6¼ 257.17 ± 41.9 219.92 ± 72.1 0.3

Fiber (gr/day) 6¼ 19.27 ± 3.5 13.87 ± 5.2 0.06

Sugar (gr/day) 6¼ 94.22 ± 59.1 83 ± 36.6 0.6

Calories6¼ 2123.78 ± 464.9 1828.38 ± 439.8 0.3

Baseline laboratory data

iPTH (pg/ml) 488±673 287±107 0.4

Fe (mcg/dl) 82.3 ± 23.3 61.9 ± 22.4 0.08

Tsat (%) 29.4 ± 8.1 28.3 ± 7.9 0.8

Ferritin (ng/ml) 254.4 ± 202.8 579.3 ± 248.5 0.01

Hgb (g/dl) 9.86 ± 2.1 9.58 ± 1.5 0.7

Medications

Phosphate binders 6 7 0.9

ESA 6 9 0.3

*Comparisons between the LAGE and HAGE groups is considered to be statistically significant at P<0.05 level (two tailed Chi-Square, Fisher exact and

Mann-Whitney U test when applicable).
6¼Mean ± standard deviation. APD/CAPD: Automated peritoneal dialysis/Continuous ambulatory peritoneal dialysis.

https://doi.org/10.1371/journal.pone.0184789.t001

dAGEs effects on gut microbiota in PD patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0184789 September 20, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0184789.t001
https://doi.org/10.1371/journal.pone.0184789


Bacteroides and Prevotella both accounted for 50%; Faecalibacterium, Blautia, Ruminococcus,
Akkermansia, Parabacteroides, Roseburia, Escherichia, and Clostridium accounted for 40%;

and the rest of 66 genus accounted for less than 10% of the gut bacterial relative abundance

(S1B Fig, S2 Table). Bacterial species that showed high relative abundance (>5%) in our cohort

at baseline were: Prevotella copri, Faecalibacterium prausnitzii, Bacteroides ovatus, Bacteroides
fragilis, and Bacteroides uniformis (S3 Table). Our data show high variability across the subjects

within each group in regards to species identified, suggesting multiple environmental/co-mor-

bid conditions beyond dietary AGE consumption.

Dietary AGE modification effects on gut microbiota

The gut microbiota composition was studied separately at both baseline and post intervention.

At baseline, dimension reduction analysis showed that the three leading principal components

(PC) accounted for 17.44%, 10.09%, and 9% of variances, respectively, and there was no differ-

ence in the gut microbiota relative abundance between the two groups (Fig 2A). After inter-

vention, dimension reduction resulted in three leading PCs explaining 13.19%, 11.84%, and

9.14% of variances, respectively. The two groups started showing small distinction in their pro-

jection onto the three principal components (Fig 2B). We found that the distinction between

the two groups is mostly due to their projection onto the third principal component

(P = 0.047), while subjects’ projection onto the first and second principal component were not

statistically significant (P = 0.345, and P = 0.308 respectively). Analysis of the bacterial species

that have contributed significantly in the third principal component (and all components) is

shown in S4 Table. It is important to note that in our analysis we have ignored small coeffi-

cients (absolute factor coefficient <0.3) to make sure that the bacterial species identified are

the ones with the most effects. From the table we notice that most of the bacterial species have

positively or negatively influenced only one of the principal components. This indicates that

these species increase/decrease in relative abundance in a dependent fashion in our patient

population. This is of certain importance as when each species relative abundance was tested

and compared between the two groups, a limited set of bacteria have shown a significant rela-

tive abundance differences after changing AGE dietary habits. (Table 3, Fig 3A, S2 Fig). Com-

paring the bacterial species that changed in relative abundance from baseline after

intervention (delta OTUs in Table 3) to their participation in each PC, reveals that Prevotella
copri, Clostridium citroniae, and Clostridium hathewayi contributed solely to PC3, while

Table 2. AGE levels before and after intervention.

AGE levels HAGE (N = 10) LAGE (N = 10) *P

Baseline AGE levels

CML (unit/mL) 6¼ 26.96 ± 2.9 26.18 ± 6.5 0.7

MG (nmol/mL) 6¼ 5.3 ± 1.7 4.79 ± 1.6 0.5

Post intervention AGE levels

CML (unit/mL) 6¼ 29.59 ± 4.6 23.29 ± 4.3 0.004

MG (nmol/mL) 6¼ 5.61 ± 1.3 4 ± 1.2 0.009

Delta AGEs (Changes from baseline)

CML (unit/mL) 6¼ 2.89 ± 4.1 -2.64 ± 3.5 0.004

MG (nmol/mL) 6¼ 0.79 ± 1.2 -0.31 ± 0.9 0.027

*Comparisons between the LAGE and HAGE groups is considered to be statistically significant at P<0.05 level (Mann-Whitney U test).
6¼Mean ± standard deviation. HAGE, high advanced glycation end products group; LAGE, low advanced glycation end products group; CML, Nε-

(carboxymethyl) lysine; MG, methylglyoxal.

https://doi.org/10.1371/journal.pone.0184789.t002
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Ruminococcus gauvreauii contributed to only PC2, and Bifidobacterium animalis and Alistipes
indistinctus have not contributed to more than 0.3 absolute coefficient to any of the compo-

nents. Phylogenic analysis (Fig 3B) indicates an increase in Firmicutes abundance and a

decrease in Verrucomicrobia in the dietary intervention group. Genus analysis shown in

Fig 3C illustrates the changes observed between the groups, which did not reach statistical sig-

nificance due to the small samples size. We then performed Shannon-Wiener diversity index

test (Fig 4) on the unannotated operational taxonomic units (OTUs) at different similarity dis-

tances (80%, 90%, 95% and 97% that corresponds to phyla, class, genus, and species levels). No

Fig 2. One month dAGE restriction resulted in changes in gut bacterial microbiota. Operational taxonomic units were annotated and

analyzed at species levels, and shows no difference in microbiota projection onto the principal components at baseline (A), followed by changes

after dietary intervention (B). HAGE, high advanced glycation end products group; LAGE, low advanced glycation end products group.

https://doi.org/10.1371/journal.pone.0184789.g002

Table 3. Species with significant differences between the groups.

Bacterial Species Delta OTUs6¼ Baseline6¼ After intervention 6¼

HAGE (N = 10) LAGE (N = 10) P HAGE (N = 10) LAGE (N = 10) P HAGE (N = 10) LAGE (N = 10) P

Bifidobacterium animalis 0.001 ± 0.004 -0.002 ± 0.005 0.045 0.0018 ± 0.004 0.0028 ± 0.006 0.649 0.003 ± 0.007 0.0004 ± 0.001 0.182

Prevotella copri 9.69 ± 20.5 -7.19 ± 14.8 0.016 23.36 ± 24.61 25.89 ± 27.71 0.802 33.06 ± 32.2 18.69 ± 25.2 0.189

Alistipes indistinctus -0.29 ± 0.57 0.018 ± 0.17 0.047 0.367 ± 0.679 0.064 ± 0.169 0.087 0.081 ± 0.175 0.082 ± 0.167 0.999

Clostridium citroniae -0.441 ± 1.12 0.365 ± 0.78 0.031 0.782 ± 1.577 0.159 ± 0.233 0.118 0.341 ± 0.565 0.525 ± 0.817 0.505

Clostridium hathewayi -1.194 ± 1.49 0.148 ± 1.04 0.008 1.982 ± 1.967 0.935 ± 1 .007 0.787 ±0.743 1.083 ±1.282 0.480

Ruminococcus gauvreauii -0.046 ± 0.06 -0.002 ± 0.02 0.013 0.093 ± 0.126 0.014 ± 0.018 0.016 0.047 ± 0.084 0.011 ± 0.018 0.101

Solobacterium moorei -0.001 ± 0.001 0.0005 ± 0.002 0.017 0.001 ± 0.001 0.0001 ± 0.0004 0.016 0 ± 0 0.0005 ± 0.001 0.283

Bryantella formatexigens -0.004 ± 0.008 -0.004 ± 0.012 0.966 0.02 ± 0.019 0.008 ± 0.015 0.100 0.013 ± 0.02 0.003 ± 0.007 0.019

Catenibacterium mitsuokai 0.154 ± 0.352 0.001 ± 0.006 0.083 0.071 ± 0.013 0.0007 ± 0.002 0.033 0.225 ± 0.43 0.002 ± 0.009 0.040

All Comparisons between the LAGE and HAGE groups is considered to be statistically significant at P<0.05 level (Mann-Whitney U test).
6¼ Numbers reported as mean ± standard deviation. OUTs, operational taxonomic units; HAGE, high advanced glycation end products group; LAGE, low

advanced glycation end products group.

https://doi.org/10.1371/journal.pone.0184789.t003
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Fig 3. Species (A), genus (B), and Phyla (C) differences between groups at baseline and after intervention. HAGE (bl), high

advanced glycation end products group at baseline; LAGE (bl), low advanced glycation end products group at baseline; HAGE

(Int), high advanced glycation end products group after intervention; LAGE (Int), low advanced glycation end products group after

intervention. The top ten species in relative abundance (74%) are shown in Fig 3A, full species are shown in S2 Fig.

https://doi.org/10.1371/journal.pone.0184789.g003
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significant difference between all groups was found in diversity across different similarity

distances.

Discussion

This pilot study shows that a one-month intervention with dietary AGE restriction in a popu-

lation of ESRD patients on maintenance PD resulted in changes in the composition of their

gut microbiota. One of the biggest changes occurred in regards to Prevotella copri relative

abundance, which significantly decreased following the low AGE diet. We confirmed previous

work showing significant reduction in serum AGEs in response to a low AGE diet, which fur-

ther indicates good adherence to the dietary instructions [44]. Moreover, compared to healthy

participants from the human microbiome project (HMP) [45], our peritoneal dialysis patients

appear to have unique different genera at baseline.

There are several lines of evidence to suggest gut microbiota is likely to be altered in patients

with CKD [46]. In general, gut microbiota dysbiosis affects and increases the risk of multiple

metabolic conditions including diabetes mellitus type 2, dyslipidemia, and obesity [47–54].

Numerous studies have shown the direct effects of alteration of gut bacterial compositions on

traditional cardiac risk factors [55], and growing evidence in clinical studies suggests that

obese individuals with insulin resistance are characterized by an altered composition of gut

microbiota, particularly an elevated Firmicutes/Bacteroidetes ratio as compared with healthy

people [56, 57].

Peritoneal dialysis solutions depend mostly on variable concentrations of dextrose [58, 59],

and the high molecular weight glucose polymer icodextran to increase intraperitoneal tonicity

and achieve adequate ultrafiltration [60]. Altered renal function, high prevalence of diabetes

mellitus type 2, and the use of glucose based solutions all appear to play a role in the microbiota

dysbiosis of ESRD PD patients. Our intervention and control groups were similar in almost all

basic characteristics with the exception of baseline concentrations of serum ferritin. It is

important to note that 50% of LAGE group patients were using icodextran compared to 20%

Fig 4. Shannon-Wiener diversity index indicating no differences among groups before and after

intervention (bars and columns represent diversity index mean ± standard deviation). HAGE (bl), high

advanced glycation end products group at baseline; LAGE (bl), low advanced glycation end products group at

baseline; HAGE (Int), high advanced glycation end products group after intervention; LAGE (Int), low

advanced glycation end products group after intervention.

https://doi.org/10.1371/journal.pone.0184789.g004
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of HAGE group. Though this could have affected the baseline bacterial composition between

the two groups, no change in dialysis prescription was implemented during the study duration

and OTUs changes from baseline in each patient were calculated to ensure normalization of

these confounding factors.

We have performed a detailed descriptive analysis evaluating the composition of the gut

microbiota in our cohort (S2 Table). Ding and Scholes divided the HMP participants based on

their gut microbiota into four communities. Most of the four communities had a higher rela-

tive abundance of Bacteroides than our cohort [45]. The four healthy communities identified

also showed much lower Prevotella abundance compared to our cohort. Interestingly, Alistipes
accounted for less than 1.5% of the relative abundance in our cohort and was the 11th genus in

abundance compared to third in the HMP study [45], indicating that ESRD, the dialysis proce-

dure, and/or the co-morbidities associated with it directly affect Alistipes abundance.

In general, Prevotella is considered a “good bacteria”. It uses xylan, xylose, and carboxy-

methylcellulose to produce high levels of short chain fatty acids (SCFAs) [61], while Alistipes
spp. are pathogenic causing colitis and site specific tumors in animal studies [62]. The

increased Prevotella and decreased Alistipes abundance in our cohort does not have to be very

protective. Prevotella copri that accounted for almost 23% of all species relative abundances in

our cohort has been found recently to be associated with autoimmune diseases, mainly rheu-

matoid arthritis [63, 64]. Detailed analysis of the baseline bacterial composition also reveals a

very low percentage of Bifidobacterium animalis (B. animalis).
In healthy individuals, B. animalis accounts for almost 16% of the Bifidobacterial popula-

tion [65], while in our cohort it accounted for less than 2%. Commercially, B. animalis is

included in most of the probiotic treatments available as it is considered to confer beneficial

effects.[65, 66] This decreased percentage of B. animalis compared to all Bifidobacterium may

be of clinical importance and warrants further investigation. In our study, B. animalis is

decreased in LAGE group and increased in HAGE, compatible with the previous in vitro stud-

ies [29, 35]. Bifidobacterium and Lactobacillus are also major lactate producing and pH regulat-

ing bacteria with the consumption of hexose sugars [67], thus altering intestinal sugar contents

that would result in decreased available nutrients and affects their relative abundance.

Alpha diversity (the mean species diversity in each individual) did not seem to differ

among the groups before and after intervention as shown in the Shannon-Weiner index test.

However, small changes in the bacterial gut microbiota composition that might not be inde-

pendently statistically significant on its own can add up to a significant shift in the overall bac-

terial composition between the groups when combined. As shown in Table 3 and S4 Table,

significant bacterial taxas have contributed to the same principal component indicating a pos-

sible interaction among these taxas and the influence of the dietary AGEs on this interaction.

The gut microbiota is dynamic and bacterial species interact closely either by competition

(competing for the same nutrients) [68, 69], producing antibacterial substances to regulate

other species, or by producing nutrients that can be used by other bacteria.

As shown in this evaluation, numerous subtle changes combined may result in a signifi-

cantly different bacterial composition after intervention. Thus, it is of crucial importance to

identify the correlation between all bacterial species residing in human gut. This interaction

could of course be affected by diseases state (ESRD in this cohort). Understanding the interac-

tion between these species will enable us to develop better and novel therapeutic strategies

aimed at favoring the growth of the “good bacteria” at the expense of the “bad bacteria”. The

correlation matrix in S5 Table explains the interaction between all species identified in the

stool of our PD cohort.

In this report, we show in detail the bacterial gut microbiota changes associated with dAGE

restriction. As shown before, AGE restriction plays a favorable role in cardio-protection and
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there is a strong association between certain bacterial metabolites/abundance and cardiovascu-

lar disease risk [11, 55]. Dietary AGE restriction may thus result in gut microbiota changes

that could play a mechanistic role in the previously observed cardio-protection properties.

This study represents a step towards addressing this and further experimental and population-

based studies are warranted.

Limitations and conclusion

Even though this study identified multiple bacterial species with altered relative abundance

after dietary intervention, these findings should be read with caution. The human gut harbors

numerous bacterial species, and this study is not powered to accurately identify the small

changes in all species relative abundance changes. Due to the high variability and the small

sample size, the effects of dialysis procedure, dialysate content or the renal failure itself on cer-

tain bacterial species needs to be further explored. Another issue is the comparison with pub-

lished literature and the lack of normal control subjects-not on dialysis for direct comparison.

The main goal of this study was to evaluate the effects of dietary AGE restriction on gut micro-

biota, and the unique microbiota found in total cohort compared with published normal sub-

jects should be interpreted with caution. Though dAGEs decreased significantly in the

intervention group it is hard to dissect the contribution of dAGE consumption effects on

changes observed from the effects of modification in diet preparation. A potential limitation of

the study is that despite measuring AGE serum levels at both baseline and after intervention,

the initial assessment and inclusion procedures were based on estimated dietary intakes cen-

tered on dietary log and recall and these procedures are subjected to recall bias. However, we

believe that the dietary assessment was reliable because dAGEs estimates were consistently

high at both enrollment and first visit. Lastly, it is still possible that incomplete dietary adher-

ence could have affected our results. To minimize lack of adherence, frequent nutritionist fol-

low up phone calls were made to ensure strict adherence to assigned low/high AGE diets

during the intervention. Moreover, results of serum AGE measurements before and after

intervention suggest dietary compliance.

In summary, our findings again confirm that even short-term restriction of dAGE intake

can significantly decrease circulating AGE levels in renal failure patients on maintenance peri-

toneal dialysis and further suggest that this dietary intervention may have an effect in the gut

microbiota. Larger studies are needed to confirm the effect of dietary AGEs on the microbiota.
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